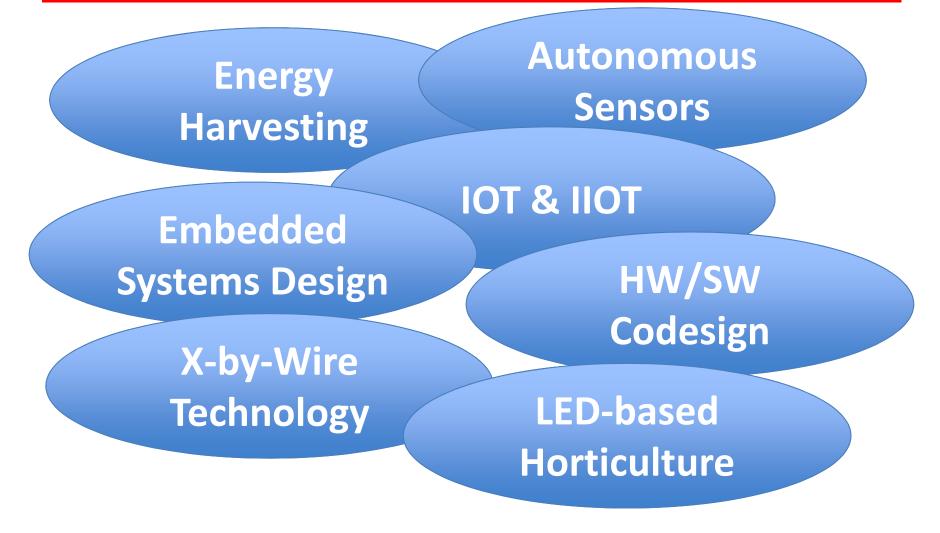


Dipartimento di Scienze e Metodi dell'Ingegneria

Tecnopolo di Reggio Emilia

Centro Interdipartimentale Intermech MORE



IES Lab Industrial Electronic Systems

A. Bertacchini

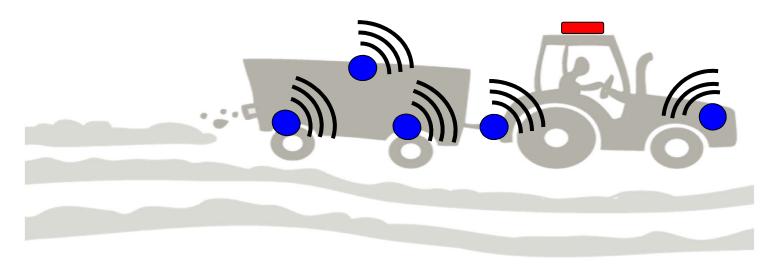
- Autonomous Wireless Sensor Nodes for Industrial Applications
- Energy Harvesting Systems for Ultra Low Power Applications
- Electronic Solutions for Automatic Machineries,
 Industrial & Off-Highway Vehicles, Automotive and
 Active Safety Enanchement
- Mechatronic Solutions & X-by-Wire Systems
- LED-based solutions for horticulture applications

Application Fields

Infrastructures 000 Gears Pumps **** **Bearings** Electric Motors Conveyors © OSRAM

Machineries

Final Products


Case Study 1 Safety on Off-Highway Vehicles

Master Device (1): data collection, data processing, gateway towards other ECUs

End Devices (many): data acquisition,

VIBester (Vibrational Energy Harvester)



The same approach can be applied to many other industrial applications (e.g. automatic machineries)

Case Study 1 Safety on Off-Highway Vehicles

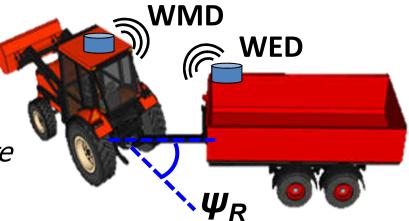
Developed End Device

35mm

– Commercial

Piezoelectric Transducers (EH) ULP µC, ULP 3-axial Accelerometer, ULP Temperature Sensor

– Customized


Low Power front-end electronics with smart power management

smart power manageme - HW-SW Co-Design

- V_{DD}: 2.0V÷3.3V
- P_{STAND-BY}: <5μW
- $P_{active_AVG} \mu C running: <10 \mu W$
- $P_{active_AVG} \mu C$ running & RF TX: 27 μW
- TX @ 2.4 GHz (802.15.4 standard)

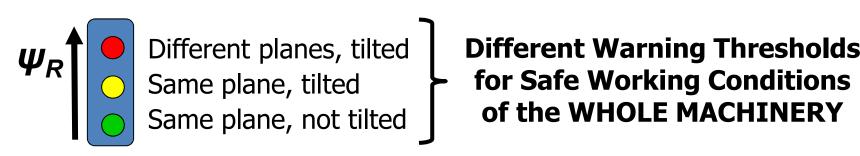
Case Study 2 **Relative Positioning of Articulated Systems** INDUSTRIAL ELECTRONIC SYSTEMS

- Detection of Dangerous ____ Working Conditions of the WHOLE MACHINERY
- Pitch, Roll, Yaw angle of both tractor and trailer needed to estimate the **Relative Yaw Angle** ψ_R

Ξ

	WMD	WED
Power Supply	Tractor Battery	VIBester with Back-up Battery
Connectivity	Wireless 802.15.4 with WED CAN bus towards the main tractor ECU	Wireless 802.15.4
Sensors	3D MEMS Accelerometer with integrated 3D Magnetometer	3D MEMS Accelerometer with integrated 3D Magnetometer
Main Features	Complex Mathematical Computation of Yaw Angles -> Risk Level Detection	Smart Task Manager Algorithm (ULP Consumption)

Case Study 2 **Relative Positioning of Articulated Systems**


WED Smart Task Manager Algorithm

Vibrations identify the working state

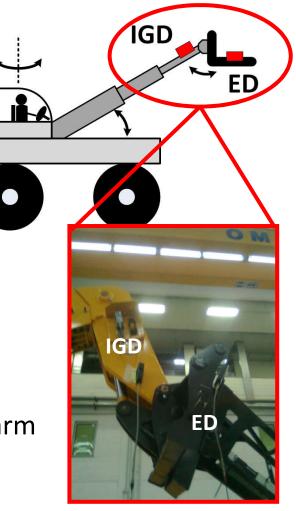
- If Higher than a defined threshold => *Trailer ON Duty* (Active State)
- If Lower than a defined threshold => *Trailer OFF Duty* (Parking State)

Pitch & Roll angles of the Trailer/Implement used to identify its Risk Level Condition (RLC)

- PWR consumption depends on Sampling Data Rate, μ C Clock Frequency, Power Supply, ..., which in turn depend on estimated instantaneous RLC

Different Warning Thresholds

Case Study 3 Active Safety System for Telehandlers



The Automatic Identification of connected implement (with main parameters) enables:

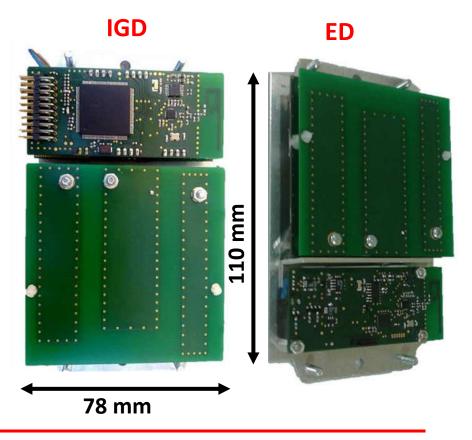
- <u>Optimal load charts for every implement</u> in use and for every working condition (*Productivity Improvement*)
- <u>Real-time update of the input parameters</u> of the vehicle control stability algorithms (Active Safety Enhancement)

System comprised of

- Illuminator/Gateway Device (IGD) on the arm
- End Device (ED) on the implement

Case Study 3 Active Safety System for Telehandlers

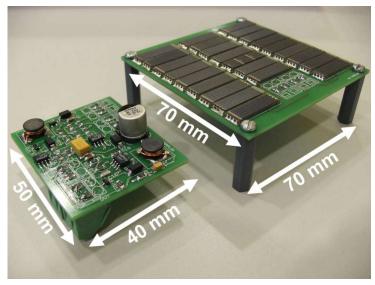
RF Power Delivery System

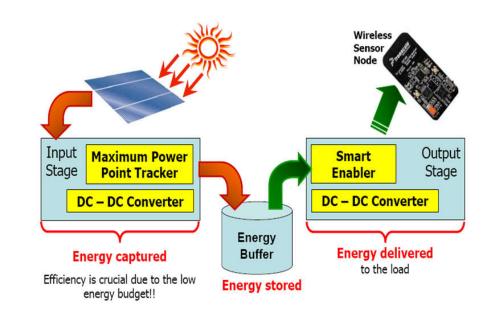

- IGD -> RF PWR generation in ISM band
- ED -> RF PWR harvesting
- Customized Dual Band Antenna for PWR-Delivery compliant with EU and US regulations

IGD

- Architecture with 2-core lock-step μC
- CAN communication with other ECUs
- 2.4 GHz IEEE 802.15.4 data transfer

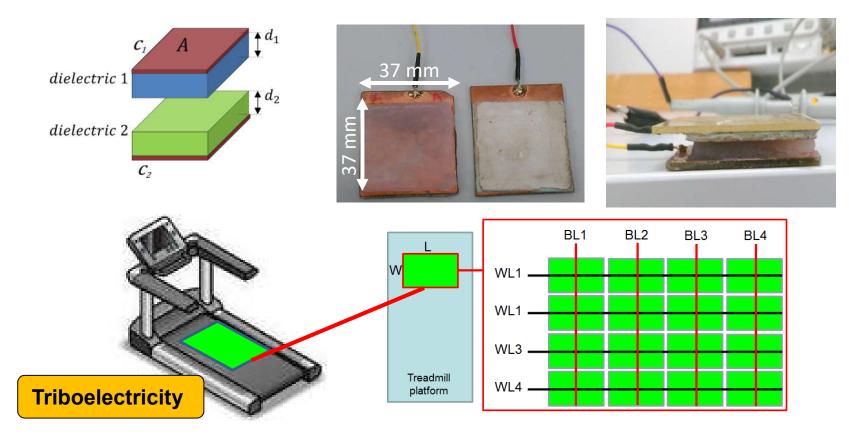
ED


- Working conditions datalogging
- Smart Power Manager



Main characteristics

Case Study 4 Autonomous WSN powered by a Solar EH



- Customized solar panel
- Customized Input Stage with MPPT
- Commercial Output Stage
- Power delivered to the load: Up to 130mW
- Energy Storage: Super Capacitor
- Input Stage Conversion Efficiency: Up to 92%

Case Study 5 Low Cost Gait Monitoring System

Target: provide the same information of high cost pressure platforms or instrumented treadmills at very low cost

Alessandro Bertacchini

University of Modena and Reggio Emilia, DISMI – Pad. Morselli Via G. Amendola, 2 – 42122 Reggio Emilia, Italy

Tecnopolo di Reggio Emilia – Lab IES Pz.le Europa, 1 – 42122 Reggio Emilia, Italy

Email:alessandro.bertacchini@unimore.itPhone:+39 0522 523525